SpaceX Dragon Splashes Down with NASA’s Station Science Cargo

August 26, 2016 in Astronomy News, cargo dragon, commercial resupply services (CRS), Commercial Space, CRS-9, Dragon, Falcon 9, Featured, international space station, International Space Station (ISS), ISS, Jeff Williams, kate rubins, Kennedy Space Center, NASA, Space Exploration Technologies, Space Station, SpaceX, SpaceX CRS-9 by Ken Kremer

14055158_10157871546605131_5915469747626659479_n-667x432.jpg

SpaceX Dragon Splashes Down with NASA’s Station Science Cargo

A SpaceX commercial Dragon cargo ship returned to Earth today, Friday, Aug. 26, 2016, by splashing down safely in the Pacific Ocean, concluding more than a month long stay at the International Space Station (ISS). The vessel was jam packed with some 1.5 tons of NASA cargo and critical science samples for eagerly waiting researchers.

The parachute assisted splashdown of the Dragon CRS-8 cargo freighter took place at 11:47 a.m. EDT today in the Pacific Ocean – located some 326 miles (520 kilometers) southwest of Baja California.

Dragon departed after spending more than five weeks berthed at the ISS.

It was loaded with more than 3,000 pounds of NASA cargo, science and technology demonstration samples accumulated by the rotating six person crews of astronauts and cosmonauts living and working aboard the orbiting research laboratory.

It arrived at the station on July 20 ferrying over 2.5 tons of priceless research equipment, gear, spare parts and supplies, food , water and clothing for the station’s resident astronauts and cosmonauts as well as the first of two international docking adapters (IDAs) in its unpressurized cargo hold known as the “trunk.”

Dragon was launched on July 18 during a mesmerizing post midnight and back to back liftoff and landing of the SpaceX Falcon 9 rocket in its upgraded, full thrust version.

The SpaceX Falcon 9 blasted off at 12:45 a.m. EDT July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and successfully delivered the Dragon CRS-9 resupply ship to its preliminary orbit about 10 minutes later.

SpaceX also successfully executed a spellbinding ground landing of the Falcon 9 first stage back at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing of the 156 foot tall Falcon 9 first stage at LZ -1 took place about 9 minutes after liftoff. It marked only the second time a spent, orbit class booster has touched down intact and upright on land.

The stage was set for today’s return to Earth when ground controllers robotically detached Dragon from the Earth-facing port of the Harmony module early this morning using the station’s 57.7-foot (17.6-meter) Canadian-built robotic arm.

Expedition 48 Flight Engineers Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) then used Canadarm 2 to release Dragon from the grappling snares at about 6:10 a.m. EDT (1011 GMT) this morning.

“Houston, station, on Space to Ground Two, Dragon depart successfully commanded,” radioed Rubins.

The ISS was soaring some 250 miles over the Timor Sea, north of Australia.

“Congratulations to the entire team on the successful release of the Dragon. And thank you very much for bringing all the science, and all the important payloads, and all the important cargo to the station,” Onishi said. “We feel really sad to see it go because we had a great time and enjoyed working on all the science that the Dragon brought to us.”

Dragon then backed away and moved to a safe distance from the station via a trio of burns using its Draco maneuvering thrusters.

The de-orbit burn was conducted at 10:56 a.m. EDT (1456 GMT) 10:56 a.m. to drop Dragon out of orbit and start the descent back to Earth.

SpaceX contracted recovery crews hauled Dragon aboard the recovery ship and are transporting it to a port near Los Angeles, where some time critical cargo items and research samples will be removed and returned to NASA for immediate processing.

SpaceX plans to move Dragon back to the firms test facility in McGregor, Texas, for further processing and to remove the remaining cargo cache.

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon was an off the shelf instrument designed to perform the first-ever DNA sequencing in space and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

During a spacewalk last week on Aug. 19, the initial docking adapter known as International Docking Adapter-2 (IDA-2) was installed Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA.

Other science experiments on board included OsteoOmics to test if magnetic levitation can accurately simulate microgravity to study different types of bone cells and contribute to treatments for diseases like osteoporosis, a Phase Change Heat Exchanger to test temperature control technology in space, the Heart Cells experiments that will culture heart cells on the station to study how microgravity changes the human heart, new and more efficient three-dimensional solar cells, and new marine vessel tracking hardware known as the Automatic Identification System (AIS) that will aid in locating and identifying commercial ships across the globe.

The ring shaped IDA-2 unit was stowed in the Dragon’s unpressurized truck section. It weighs 1029 lbs (467 kg), measures about 42 inches tall and sports an inside diameter of 63 inches in diameter – so astronauts and cargo can easily float through. The outer diameter measures about 94 inches.

“Outfitted with a host of sensors and systems, the adapter is built so spacecraft systems can automatically perform all the steps of rendezvous and dock with the station without input from the astronauts. Manual backup systems will be in place on the spacecraft to allow the crew to take over steering duties, if needed,” says NASA.

“It’s a passive system which means it doesn’t take any action by the crew to allow docking to happen and I think that’s really the key,” said David Clemen Boeing’s director of Development/Modifications for the space station.

“Spacecraft flying to the station will use the sensors on the IDA to track to and help the spacecraft’s navigation system steer the spacecraft to a safe docking without astronaut involvement.”

CRS-9 counts as the company’s ninth of 26 scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission was launched for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Watch for Ken’s continuing SpaceX and CRS mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The post SpaceX Dragon Splashes Down with NASA’s Station Science Cargo appeared first on Universe Today.

A New NASA Cumulative Time in Space Record

August 26, 2016 in Astronomy, Astronomy News, Cumulative Time in Space Record, Featured, ISS, manned mission to Mars, Mars, microgravity, NEOs, Space Exploration by Matt Williams

iss048e057391-700x432.jpg

A New NASA Cumulative Time in Space Record

The International Space Station has provided astronauts and space agencies with immense opportunities for research during the decade and a half that it has been in operation. In addition to studies involving meteorology, space weather, materials science, and medicine, missions aboard the ISS has also provided us with valuable insight into human biology.

For example, studies conducted aboard the ISS’ have provided us with information about the effects of long-term exposure to microgravity. And all the time, astronauts are pushing the limits of how long someone can healthily remain living under such conditions. One such astronauts is Jeff Williams, the Expedition 48 commander who recently established a new record for most time spent in space.

This record-breaking feat began back in 2000, when Williams spent 10 days aboard the Space Shuttle Atlantis for mission STS-101. At the time, the International Space Station was still under construction, and as the mission’s flight engineer and spacewalker, Williams helped prepare the station for its first crew.

This was followed up in 2006, where Williams’ served as part of Expedition 13 to the ISS. The station had grown significantly at this point with the addition of Russian Zvezda service module, the U.S. Destiny laboratory, and the Quest airlock. Numerous science experiments were also being conducted at this time, which included studies into capillary flow and the effects of microgravity on astronauts’ central nervous systems.

During the six months he was aboard the station, Williams was able to get in two more spacewalks, set up additional experiments on the station’s exterior, and replaced equipment. Three years later, he would return to the station as part of Expedition 21, then served as the commander of Expedition 22, staying aboard the station for over a year (May 27th, 2009 to March 18th, 2010).

By the time Expedition 48’s Soyuz capsule launched to rendezvous with the ISS on July 7th, 2016, Williams had already spent more than 362 days in space. By the time he returns to Earth on Sept. 6th, he will have spent a cumulative total of 534 days in space. He will have also surpassed the previous record set by Scott Kelly, who spent 520 days in space over the course of four missions.

On Wednesday, August 24th, the International Space Station raised its orbit ahead of Williams’ departure. Once he and two of his mission colleagues – Oleg Skripochka and Alexey Ovchinin – undock in their Soyuz TMA-20M spacecraft, they begin their descent towards Kazakhstan, arriving on Earth roughly three and a half hours later.

Former astronaut Scott Kelly was a good sport about the passing of this record, congratulating Williams in a video created by the Johnson Space Center (see below). Luckily, Kelly still holds the record for the longest single spaceflight by a NASA astronaut – which lasted a stunning 340 days.

And Williams may not hold the record for long, as astronaut Peggy Whitson is scheduled to surpass him in 2017 during her next mission (which launches this coming November). And as we push farther out into space in the coming years, mounting missions to NEOs and Mars, this record is likely to be broken again and again.

In the meantime, Williams and his crew will continue to dedicate their time to a number of crucial experiments. In the course of this mission, they have conducted research into human heart function, plant growth in microgravity, and executed a variety of student-designed experiments.

Like all research conducted aboard the ISS, the results of this research will be used to improve health treatments, have numerous industrial applications here on Earth, and will help NASA plan mission farther into space. Not the least of which will be NASA’s proposed (and rapidly approaching) crewed mission to Mars.

In addition to spending several months in zero-g for the sake of the voyage, NASA will need to know how their astronauts will fair when conducting research on the surface of Mars, where the gravity is roughly 37% that of Earth (0.376 g to be exact).

And be sure to enjoy this video of Scott Kelly congratulating Williams on his accomplishment, courtesy of the Johnson Space Center:

https://youtu.be/_403HWLU6Uk

Further Reading: NASA

The post A New NASA Cumulative Time in Space Record appeared first on Universe Today.

Jupiter’s Extended Family? A Billion or More

August 26, 2016 in Astronomy News, science by News and Features - NASA's Jet Propulsion Laboratory

exoJupiter20160826-226.jpg

The giant planet Jupiter could hold the secret to the formation of the solar system, of Earth itself, and of a billion or more “Jupiters” orbiting distant stars.

What Can We Expect From Juno’s Return To Jupiter?

August 26, 2016 in Astronomy, Astronomy News, Featured, Juno Mission, Jupiter, News by Matt Williams

LM-Juno-JOI-illustration-580x435.jpg

The Juno spacecraft made history on July 4th, 2016, when it became the second spacecraft in history to achieve orbit around Jupiter for the sake of a long-term mission. Following in the footsteps of the Galileo mission, the probe will spend the next 20 months gathering data on Jupiter’s atmosphere, clouds, interior and gravitational and […]

The post What Can We Expect From Juno’s Return To Jupiter? appeared first on Universe Today.

This Week’s Sky at a Glance, August 26 – September 3

August 26, 2016 in Astronomy News, Observing, This Week's Sky At a Glance by Alan MacRobert

Venus-Jupiter-27Aug2016_f.jpg

Some daily sky events among the ever-changing Moon, planets, stars and constellations, from Sky & Telescope magazine, the essential guide to astronomy.

The post This Week’s Sky at a Glance, August 26 – September 3 appeared first on Sky & Telescope.

Katherine Johnson at NASA Langley Research Center

August 26, 2016 in Astronomy News by NASA Image of the Day

katherine_johnson_john_glenn.png

NASA research mathematician Katherine Johnson is photographed at her desk at Langley Research Center. Born on Aug. 26, 1918, in White Sulphur Springs, WV, Johnson worked at Langley from 1953 until her retirement in 1986, making critical technical contr…

SpaceX Dragon Splashes Down with Crucial NASA Research Samples

August 26, 2016 in Astronomy News by NASA Breaking News

dragon_departure_160826.png

SpaceX’s Dragon cargo spacecraft splashed down in the Pacific Ocean at 11:47 a.m. EDT Friday, Aug. 26, southwest of Baja California with more than 3,000 pounds of NASA cargo, science and technology demonstration samples from the International Space Sta…

Juno Probe to Get 1st Up-Close Look at Jupiter Saturday

August 26, 2016 in Astronomy News by SPACE.com

juno-jupiter-photos.jpg

At 8:51 a.m. EDT (1251 GMT) on Saturday (Aug. 27), Juno will zoom within 2,500 miles (4,200 kilometers) of Jupiter’s cloud tops — closer than the probe is scheduled to come during its entire mission, NASA officials said.

Star of the week: 61 Cygni

August 26, 2016 in Astronomy News, Brightest Stars, Tonight by Larry Sessions

61-cygni-6-25-2015-Scott-MacNeill-Frosty-Drew_Observatory-Charlestown-RI1-150x150.jpg

61 Cygni isn’t bright. But it moves exceptionally rapidly against the background of more distant stars. Its motion reveals its nearness to Earth.

Citizen Scientists Help Crack 300 Year Old Mystery Of Eclipse Wind

August 26, 2016 in 2015 partial solar eclipse, Astronomy News, Citizen Science, Citizen Scientists, Eclipses, Featured by Nancy Atkinson

CAix9pHU0AAeTPp.jpg

Citizen Scientists Help Crack 300 Year Old Mystery Of Eclipse Wind

Being able to witness a solar eclipse is certainly a distinct experience. Even though the spectacle is mostly visual, there can be other effects as well. The air can cool, and observers may notice a decrease in wind speed or a change in wind direction. There might even be an eerie silence.

Experiences like this have been noted for centuries, and famed astronomer Edmund Halley wrote of the ‘Chill and Damp which attended the Darkness’ during an eclipse in 1715, which he noted caused ‘some sense of Horror’ among those who were witnessing the event.

While most people would describe an eclipse as ‘awe-inspiring’ (and not a horrifying at all) the atmospheric changes noted by observers over the years has been called the “eclipse wind.” And now, based on the observations of over 4,500 citizen scientists in the UK during the partial eclipse on March 20, 2015, this effect is not just a figment of anyone’s imagination; it is a real phenomenon.

The National Eclipse Weather Experiment (NEWEx) was a UK-wide citizen science project for collecting atmospheric data during that eclipse. Members of the public – including about 200 schools – recorded weather changes such as air temperature, wind speed, wind direction and cloud cover every five minutes during the eclipse. That data, submitted online, was compared with official data from the UK’s Met office observations, the United Kingdom’s national weather service.

“The NEWEx was, as far as we know, a world first, in measuring and analyzing eclipse changes in the weather on a national scale, in close to real time, through engagement of a network of citizen scientists,” wrote researchers from Luke Barnard, Giles Harrison, Suzanne Gray and Antonio Portas from the University of Reading, in one of a series of new papers about eclipse meteorology published this week.

The data revealed that not only did the atmosphere cool during the eclipse – which is not surprising since solar radiation is being blocked by the Moon – but the winds and cloud cover also decreased. The cumulative effect is real, not just anecdotal, the team said.

The Data

NEWEx collected 15,606 meteorological observations from 309 locations within the UK and from those observations the science team was able to derive estimates of the near-surface air temperature, cloudiness and near-surface wind speed fields across many UK sites. The data submitted by citizen scientists were combined with Met Office surface weather stations and a network of roadside weather sensors that monitor highway conditions. The combination of data helped unravel the centuries-old mystery of the eclipse wind.

From analysis of the data, they found that the wind change is caused by variations to the “boundary layer” – the area of air that usually separates high-level winds from those at the ground.

“There have been lots of theories about the eclipse wind over the years, but we think this is the most compelling explanation yet,” said Harrison in a press release from the University of Reading in the UK. “As the sun disappears behind the moon the ground suddenly cools, just like at sunset. This means warm air stops rising from the ground, causing a drop in wind speed and a shift in its direction, as the slowing of the air by the Earth’s surface changes.”

The measurements from citizen scientists clearly showed temperature drops and a decrease in clouds. The team did note that because of the low velocity of winds and some areas where cloud cover change was small, it was difficult for the participants to make some of the measurements. But the high level of participation across the UK provided enough data for the team to make their conclusions.

“Halley also relied on combining eclipse observations from amateur investigators across Britain. We have continued his approach,” Harrison said.

A total of 16 new papers and reports were published this week in a special ‘eclipse meteorology’ issue of the world’s oldest scientific journal, Philosophical Transactions of the Royal Society A. The special issue is published 301 years after Halley’s report of the eclipse in London in 1715 – and in exactly the same journal.

The team wrote that they hope a similar citizen science effort might take place in August 2017, when a total solar eclipse will be visible from North America, providing another opportunity to study eclipse-induced meteorology changes.
“NEWEx serves as a useful example of the strengths and challenges of using a citizen science approach to study eclipse-induced meteorological changes, and could provide a template for a similar study for the August 2017 eclipse,” the team said.

Sources: Paper: The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations, Philosophical Transactions of the Royal Society A, University of Reading.

The post Citizen Scientists Help Crack 300 Year Old Mystery Of Eclipse Wind appeared first on Universe Today.

Skip to toolbar